MAKING A SUITCASE

Think-Outside-The-Box Luggage Company wants to make suitcases. They plan to use 20 by 10 pieces of cardboard to design a suitcase that holds the maximum volume. As their mathematician, you are to find what dimensions will create such a box.

- Create some possible suitcases by folding the 20 by 10 models in half as shown above. Then cut four equal-sized squares from the corners and fold the paper to form a box with a top. Determine the volume of the box.
- Record your data in the table below. Be sure to include some fractional heights.

Length (ℓ) 8 6.5	Width (w) 8	Height (h)	Volume (<i>V</i>) 128
I	7.	2	128
6.5	7,45	2	1/1-1
6		7 35	147.8
U	0	4	144
5	5	5	125
4	4.	6	96
3	3	7	63
2	2	8	32
	l	9	9
0	0	10	\cap
	4 2 2 1	5 4 3 2 2 1 0	5 5 6 4 4 6 3 7 2 2 8 1 1 9 0 0 10

3. On a sheet of graph paper, plot *V* vs. *h*.

4. What are the x-intercepts of V(h)? Considering the problem, explain why those are the x-intercepts.

0 and 10

- 5. Using your graph, estimate the greatest possible volume for the suitcase. What dimensions (length, width, and height) will create this volume? 147.875 6.5 by 6.5 by 6.5 by 3.5
- 6. Referring to the patterns in your data chart, propose a function relating the width and the height. (i.e. w(h) = ?)

w(h)= 10-h

7. Referring to the patterns in your data chart, propose a function relating the length and the height. (i.e. $\ell(h) = ?$)

e(h)=10-h

- 8. Referring to the patterns in your data chart, propose an equation representing V(h). $V = W \cdot L \cdot h$ $V = (100-20h + h^2)h$ V = (10-h)(10-h)h $V = h^3-20h^2+100h$
- Plot the data on your calculator using the lists, and then graph your V(h) equation from #8. Make sure to choose an appropriate WINDOW. How well does your equation match the data?
- On your calculator, TRACE to find the maximum volume. What dimensions will create this volume?

6.66 6.66 3.33 148115

1. Choose a larger WINDOW and describe the general characteristics of the *V(h)* graph. Are there any other *x*-intercepts? How many turns does the graph have?

3 furns

SUITCASE TEMPLATES

UCLA Math Content Programs for Teachers Behavior of Polynomials 2: Cubics and More

BP2 - PP19

GRAPH PAPER

080